Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
1.
Nat Commun ; 15(1): 3382, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643164

RESUMO

Cancer models play critical roles in basic cancer research and precision medicine. However, current in vitro cancer models are limited by their inability to mimic the three-dimensional architecture and heterogeneous tumor microenvironments (TME) of in vivo tumors. Here, we develop an innovative patient-specific lung cancer assembloid (LCA) model by using droplet microfluidic technology based on a microinjection strategy. This method enables precise manipulation of clinical microsamples and rapid generation of LCAs with good intra-batch consistency in size and cell composition by evenly encapsulating patient tumor-derived TME cells and lung cancer organoids inside microgels. LCAs recapitulate the inter- and intratumoral heterogeneity, TME cellular diversity, and genomic and transcriptomic landscape of their parental tumors. LCA model could reconstruct the functional heterogeneity of cancer-associated fibroblasts and reflect the influence of TME on drug responses compared to cancer organoids. Notably, LCAs accurately replicate the clinical outcomes of patients, suggesting the potential of the LCA model to predict personalized treatments. Collectively, our studies provide a valuable method for precisely fabricating cancer assembloids and a promising LCA model for cancer research and personalized medicine.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Organoides/patologia , Medicina de Precisão/métodos
2.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659053

RESUMO

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Organoides , Células-Tronco Pluripotentes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Organoides/metabolismo , Organoides/patologia , Células-Tronco Pluripotentes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Biológicos
3.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654010

RESUMO

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fator 7 de Crescimento de Fibroblastos , Ilhotas Pancreáticas , Organoides , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/genética , Organoides/virologia , Organoides/metabolismo , Organoides/patologia , Animais , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/virologia , Ilhotas Pancreáticas/patologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Camundongos , Masculino , Células-Tronco Embrionárias Humanas/metabolismo , Secreção de Insulina/genética
4.
Sci Rep ; 14(1): 9377, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654067

RESUMO

Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Linfócitos T , Microambiente Tumoral , Organoides/patologia , Organoides/metabolismo , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/imunologia , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Técnicas de Cocultura/métodos , Linhagem Celular Tumoral
5.
Cell Stem Cell ; 31(3): 281-282, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458173

RESUMO

Kastenschmidt et al.1 present a groundbreaking organoid culture model for follicular lymphoma, which is capable of maintaining stable compositions of B and T cells. This model is utilized in testing bispecific antibodies in effective killing of tumor B cells with the activation of T cells.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Humanos , Organoides/patologia
6.
Nat Commun ; 15(1): 2219, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472255

RESUMO

Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.


Assuntos
Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/patologia , Microfluídica , Organoides/patologia , Dispositivos Lab-On-A-Chip
7.
J Cancer Res Clin Oncol ; 150(3): 146, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509422

RESUMO

Ovarian cancer (OC) is a major cause of gynecological cancer mortality, necessitating enhanced research. Organoids, cellular clusters grown in 3D model, have emerged as a disruptive paradigm, transcending the limitations inherent to conventional models by faithfully recapitulating key morphological, histological, and genetic attributes. This review undertakes a comprehensive exploration of the potential in organoids derived from murine, healthy population, and patient origins, encompassing a spectrum that spans foundational principles to pioneering applications. Organoids serve as preclinical models, allowing us to predict how patients will respond to treatments and guiding the development of personalized therapies. In the context of evaluating new drugs, organoids act as versatile platforms, enabling thorough testing of innovative combinations and novel agents. Remarkably, organoids mimic the dynamic nature of OC progression, from its initial formation to the spread to other parts of the body, shedding light on intricate details that hold significant importance. By functioning at an individualized level, organoids uncover the complex mechanisms behind drug resistance, revealing strategic opportunities for effective treatments.


Assuntos
Ginecologia , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Medicina de Precisão , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Organoides/patologia
8.
Hum Cell ; 37(3): 840-853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546950

RESUMO

Patient-derived organoids (PDOs) retain the original tumor's characteristics to a large degree and allow direct evaluation of the drug sensitivity, thereby emerging as a valuable resource for both basic and preclinical researches. Whereas most past studies stereotypically adopted a single PDO as an avatar of the patient, it remains to be investigated whether this assumption can be justified even for the tumor with spatial diversity. To address this issue, we established and characterized multiple PDOs originating from various sites of a patient with advanced uterine carcinosarcoma (UCS). Specifically, cancer cells were separately sampled from three sites; resected UCS tumor tissue, the peritoneal lavage fluid, and an intra-uterine brushing of the tumor. The three derived PDOs were morphologically undistinguishable, displaying typical carcinoma organoids-like appearance, but two of them proliferated at a faster rate. The primary tumor harbored mutations in TP53 and STK11 along with amplifications in CCNE1, ERBB2, and KRAS. These two mutations and the CCNE1 amplification were detected in all PDOs, while either KRAS or ERBB2 amplification was selectively observed in each PDO in a mutually exclusive manner. Observed intra-tumor heterogeneity in HER2 expression was differentially reproduced in the PDOs, which mirrored each PDO's sensitivity to HER2 inhibitors. Inter-PDO heterogeneity was also evident in sensitivity to standard cytotoxic agents. Lastly, a drug screening identified four candidate reagents commonly effective to all PDOs. Collectively, we showed that multiple PDOs could help reproduce the spatial diversity of a tumor and serve as a valuable resource in UCS research in many respects.


Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas p21(ras) , Feminino , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias do Endométrio/patologia , Organoides/patologia
9.
Lab Chip ; 24(8): 2208-2223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533822

RESUMO

This study presents the vascularized tissue on mesh-assisted platform (VT-MAP), a novel microfluidic in vitro model that uses an open microfluidic principle for cultivating vascularized organoids. Addressing the gap in 3D high-throughput platforms for drug response analysis, the VT-MAP can host tumor clusters of various sizes, allowing for precise, size-dependent drug interaction assessments. Key features include capability for forming versatile co-culture conditions (EC, fibroblasts and colon cancer organoids) that enhance tumor organoid viability and a perfusable vessel network that ensures efficient drug delivery and maintenance of organoid health. The VT-MAP enables the culture and analysis of organoids across a diverse size spectrum, from tens of microns to several millimeters. The VT-MAP addresses the inconsistencies in traditional organoid testing related to organoid size, which significantly impacts drug response and viability. Its ability to handle various organoid sizes leads to results that more accurately reflect patient-derived xenograft (PDX) models and differ markedly from traditional in vitro well plate-based methods. We introduce a novel image analysis algorithm that allows for quantitative analysis of organoid size-dependent drug responses, marking a significant step forward in replicating PDX models. The PDX sample from a positive responder exhibited a significant reduction in cell viability across all organoid sizes when exposed to chemotherapeutic agents (5-FU, oxaliplatin, and irinotecan), as expected for cytotoxic drugs. In sharp contrast, PDX samples of a negative responder showed little to no change in viability in smaller clusters and only a slight reduction in larger clusters. This differential response, accurately replicated in the VT-MAP, underscores its ability to generate data that align with PDX models and in vivo findings. Its capacity to handle various organoid sizes leads to results that more accurately reflect PDX models and differ markedly from traditional in vitro methods. The platform's distinct advantage lies in demonstrating how organoid size can critically influence drug response, revealing insights into cancer biology previously unattainable with conventional techniques.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Telas Cirúrgicas , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Modelos Animais de Doenças , Organoides/patologia
10.
Comput Biol Med ; 173: 108322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554658

RESUMO

Patient-derived organoids have proven to be a highly relevant model for evaluating of disease mechanisms and drug efficacies, as they closely recapitulate in vivo physiology. Colorectal cancer organoids, specifically, exhibit a diverse range of morphologies, which have been analyzed with image-based profiling. However, the relationship between morphological subtypes and functional parameters of the organoids remains underexplored. Here, we identified two distinct morphological subtypes ("cystic" and "solid") across 31360 bright field images using image-based profiling, which correlated differently with viability and apoptosis level of colorectal cancer organoids. Leveraging object detection neural networks, we were able to categorize single organoids achieving higher viability scores as "cystic" than "solid" subtype. Furthermore, a deep generative model was proposed to predict apoptosis intensity based on a apoptosis-featured dataset encompassing over 17000 bright field and matched fluorescent images. Notably, a significant correlation of 0.91 between the predicted value and ground truth was achived, underscoring the feasibility of this generative model as a potential means for assessing organoid functional parameters. The underlying cellular heterogeneity of the organoids, i.e., conserved colonic cell types and rare immune components, was also verified with scRNA sequencing, implying a compromised tumor microenvironment. Additionally, the "cystic" subtype was identified as a relapse phenotype featuring intestinal stem cell signatures, suggesting that this visually discernible relapse phenotype shows potential as a novel biomarker for colorectal cancer diagnosis and prognosis. In summary, our findings demonstrate that the morphological heterogeneity of colorectal cancer organoids explicitly recapitulate the association of phenotypic features and exogenous perturbations through the image-based profiling, providing new insights into disease mechanisms.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Humanos , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Organoides/metabolismo , Organoides/patologia , Recidiva , Microambiente Tumoral
11.
Lung Cancer ; 190: 107533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520909

RESUMO

Lung cancer is the leading cause of global cancer-related mortality resulting in âˆ¼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Medicina de Precisão/métodos , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pulmão , Organoides/patologia , Microambiente Tumoral
12.
Zhonghua Wai Ke Za Zhi ; 62(4): 346-352, 2024 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-38432677

RESUMO

Intrahepatic cholangiocarcinoma(ICC) refers to cholangiocarcinomas originating from the secondary bile ducts within the liver and their branches.As a prevalent malignancy of the liver,the diagnosis and treatment of ICC pose significant challenges due to the high heterogeneity of the tumor and its propensity to develop drug resistance.Traditional drug screening and tumor mechanism studies have been confined to two-dimensional cell line cultures and patient-derived xenograft(PDX) models.However,cell lines cannot fully recapitulate the tumor heterogeneity,and PDX models have limitations such as high costs and time consumption,making them less practical for widespread clinical application.To address the limitations of these models,organoid models have been developed based on two-dimensional cell cultures.Organoid models combine the advantages of both aforementioned culture methods and offer unique strengths in cancer research.They provide a new perspective for studying the development and treatment of tumors. In this review, the focus is primarily on the latest advances in the field of organoids of ICC,with a particular emphasis on existing culture protocols and their potential applications in precision medicine and the establishment of biobanks.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Humanos , Colangiocarcinoma/patologia , Fígado/patologia , Modelos Animais de Doenças , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Organoides/metabolismo , Organoides/patologia
13.
Prostate ; 84(7): 623-635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450798

RESUMO

BACKGROUND: There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS: In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS: An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS: There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Reprodutibilidade dos Testes , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Próstata/patologia , Organoides/patologia , Xenoenxertos , Microambiente Tumoral
15.
Cancer Med ; 13(4): e7081, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457217

RESUMO

BACKGROUND: The intra- and inter-tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. AIMS: In this study, we aimed to address the limitations of traditional tumor models by generating patient-derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. MATERIALS AND METHODS: We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. RESULTS: Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. DISCUSSION: Patient-derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. CONCLUSION: The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee.


Assuntos
Glioma , Adulto , Humanos , Animais , Camundongos , Glioma/patologia , Técnicas de Cultura de Células/métodos , Organoides/metabolismo , Organoides/patologia , Células-Tronco Neoplásicas , Microambiente Tumoral
16.
Inflamm Res ; 73(4): 541-562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345635

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD. METHODS: To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy. RESULTS: This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine. CONCLUSION: The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Estudos Prospectivos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Organoides/patologia
17.
Aging (Albany NY) ; 16(5): 4396-4422, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38407980

RESUMO

Proper preclinical models for the research of colorectal cancer (CRC) and CRC liver metastases (CLM) are a clear and unmet need. Patient-derived organoids have recently emerged as a robust preclinical model, but are not available to all scientific researchers. Here, we present paired 3D organoid cell lines of CWH22 (CRC-derived) and CLM22 (CLM-derived) with sound background information and the short tandem repeats are identical to those of the normal tissue. Morphological and immunohistochemical staining, along with whole-exome sequencing (WES), confirmed that the organoids exhibited the same differentiation, molecular expression, and mutation status as the corresponding tumor tissue. Both organoids possessed mutated APC/KRAS/SMAD4/CDKN1B/KMT2C genes and wild-type TP53 and PIK3CA; stably secreted the tumor markers CEA and CA19-9, and possessed sound proliferation rates in vitro, as well as subcutaneous tumorigenicity and liver metastatic abilities in vivo. IC50 assays confirmed that both cell lines were sensitive to 5-fluorouracil, oxaliplatin, SN-38, and sotorasib. WES and karyotype analyses revealed the genomic instability status as chromosome instability. The corresponding adherent cultured CWH22-2D/CLM22-2D cells were established and compared with commonly used CRC cell lines from the ATCC. Both organoids are publicly available to all researchers and will be useful tools for specific human CRC/CLM studies both in vitro and in vivo.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxaliplatina , Neoplasias Hepáticas/patologia , Organoides/patologia , Linhagem Celular
18.
Int J Oncol ; 64(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390969

RESUMO

Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well­characterized models encompassing the full spectrum of subtypes are necessary. Patient­derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti­cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Xenoenxertos , Medicina de Precisão/métodos , Modelos Animais de Doenças , Organoides/patologia
19.
Cancer Lett ; 588: 216737, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38382667

RESUMO

Although organoids derived from tumor tissues have been widely used in cancer research, it is a great challenge for cultured organoids to retain the characteristics of the original tumor tissues due to their heterogeneity. In this study, we explore organoid culture recipes to capture tumor features of colorectal cancers. We find that the activation of Wnt and EGF signaling and inhibition of BMP signaling are non-essential for the survival of most colorectal cancer organoids (CRCOs). We design a growth factor-reduced culture medium containing FGF10, A83-01 (TGF-ß type I receptor inhibitor), SB202190 (p38 MAPK inhibitor), gastrin, and nicotinamide. Using this medium, we can maintain tumor features in long-term CRCO cultivation, as evidenced by histopathology, genetic stability, tumorigenicity, and response of clinical treatments. Our findings offer a reliable and economical strategy for CRCO culture, facilitating the utilization of organoids in colorectal cancer research and treatment.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Organoides/patologia
20.
Crit Rev Oncol Hematol ; 195: 104285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311013

RESUMO

This review assesses the possibility of utilizing malignant effusions (MEs) for generating patient-derived tumor organoids (PDTOs). Obtained through minimally invasive procedures MEs broaden the spectrum of organoid sources beyond resection specimens and tissue biopsies. A systematic search yielded 11 articles, detailing the successful generation of 190 ME-PDTOs (122 pleural effusions, 54 malignant ascites). Success rates ranged from 33% to 100%, with an average of 84% and median of 92%. A broad and easily applicable array of techniques can be employed, encompassing diverse collection methods, variable centrifugation speeds, and the inclusion of approaches like RBC lysis buffer or centrifuged ME supernatants supplementation, enhancing the versatility and accessibility of the methodology. ME-PDTOs were found to recapitulate primary tumor characteristics and were primarily used for drug screening applications. Thus, MEs are a reliable source for developing PDTOs, emphasizing the need for further research to maximize their potential, validate usage, and refine culturing processes.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Biópsia , Organoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...